Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Poult Sci ; 59(1): 38-47, 2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-35125911

RESUMO

Japanese indigenous chickens include approximately 50 breeds exhibiting various morphological traits, such as a long tail. These genetic resources will be important for revealing the genetic basis of morphological traits in the future. However, little is known about the phenotypic characteristics of each breed during the growth stages. To understand age-dependent changes in growth and morphological traits, we investigated tail length, tail number, body weight, and shank length at several time points using three genetically distinct Japanese indigenous chicken breeds. A total of 155 birds from the Tosa-jidori, Chabo, and Minohikichabo breeds were used for trait measurements from 1 to 36 weeks of age to reveal breed and sex effects. Significant sex differences through the growth stages were observed for all traits except for tail number. Although there were no clear breed differences in tail length traits at the 6- and 20-week stages, Minohikichabo ultimately had a significantly longer tail due to extended tail feather growth at later stages (28 and 36 weeks). By measuring two tail length variables (central and maximum), it was revealed that the shape of the tail feathers varies with the growth stage. Minohikichabo's tail number was higher than that of Tosajidori and Chabo at earlier ages (8 and 16 weeks), which leads to an elegant visual in Minohikichabo. Tosa-jidori's body weight was higher than that of Chabo and Minohikichabo, whereas the shank lengths of Chabo and Minohikichabo were shorter than those of Tosa-jidori. These differences in body weight and shank length were consistent from the early to late growth stages. These results revealed the age-dependency of growth and morphological trait breed characteristics.

2.
Plant J ; 108(1): 81-92, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34273198

RESUMO

Steroidal glycoalkaloids (SGAs) are toxic specialized metabolites found in members of the Solanaceae, such as Solanum tuberosum (potato) and Solanum lycopersicum (tomato). The major potato SGAs are α-solanine and α-chaconine, which are biosynthesized from cholesterol. Previously, we have characterized two cytochrome P450 monooxygenases and a 2-oxoglutarate-dependent dioxygenase that function in hydroxylation at the C-22, C-26 and C-16α positions, but the aminotransferase responsible for the introduction of a nitrogen moiety into the steroidal skeleton remains uncharacterized. Here, we show that PGA4 encoding a putative γ-aminobutyrate aminotransferase is involved in SGA biosynthesis in potatoes. The PGA4 transcript was expressed at high levels in tuber sprouts, in which SGAs are abundant. Silencing the PGA4 gene decreased potato SGA levels and instead caused the accumulation of furostanol saponins. Analysis of the tomato PGA4 ortholog, GAME12, essentially provided the same results. Recombinant PGA4 protein exhibited catalysis of transamination at the C-26 position of 22-hydroxy-26-oxocholesterol using γ-aminobutyric acid as an amino donor. Solanum stipuloideum (PI 498120), a tuber-bearing wild potato species lacking SGA, was found to have a defective PGA4 gene expressing the truncated transcripts, and transformation of PI 498120 with functional PGA4 resulted in the complementation of SGA production. These findings indicate that PGA4 is a key enzyme for transamination in SGA biosynthesis. The disruption of PGA4 function by genome editing will be a viable approach for accumulating valuable steroidal saponins in SGA-free potatoes.


Assuntos
4-Aminobutirato Transaminase/metabolismo , Solanina/análogos & derivados , Solanum tuberosum/genética , 4-Aminobutirato Transaminase/genética , Edição de Genes , Hidroxilação , Cetocolesteróis/biossíntese , Cetocolesteróis/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Tubérculos/enzimologia , Tubérculos/genética , Tubérculos/fisiologia , Saponinas/biossíntese , Saponinas/química , Solanina/química , Solanina/metabolismo , Solanum tuberosum/enzimologia , Solanum tuberosum/fisiologia
3.
Plant Cell Physiol ; 60(6): 1304-1315, 2019 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-30892648

RESUMO

α-Tomatine and dehydrotomatine are major steroidal glycoalkaloids (SGAs) that accumulate in the mature green fruits, leaves and flowers of tomato (Solanum lycopersicum), and function as defensive compounds against bacteria, fungi, insects and animals. The aglycone of dehydrotomatine is dehydrotomatidine (5,6-dehydrogenated tomatidine, having the Δ5,6 double bond; the dehydro-type). The aglycone of α-tomatine is tomatidine (having a single bond between C5 and C6; the dihydro-type), which is believed to be derived from dehydrotomatidine via four reaction steps: C3 oxidation, isomerization, C5 reduction and C3 reduction; however, these conversion processes remain uncharacterized. In the present study, we demonstrate that a short-chain alcohol dehydrogenase/reductase designated Sl3ßHSD is involved in the conversion of dehydrotomatidine to tomatidine in tomato. Sl3ßHSD1 expression was observed to be high in the flowers, leaves and mature green fruits of tomato, in which high amounts of α-tomatine are accumulated. Biochemical analysis of the recombinant Sl3ßHSD1 protein revealed that Sl3ßHSD1 catalyzes the C3 oxidation of dehydrotomatidine to form tomatid-4-en-3-one and also catalyzes the NADH-dependent C3 reduction of a 3-ketosteroid (tomatid-3-one) to form tomatidine. Furthermore, during co-incubation of Sl3ßHSD1 with SlS5αR1 (steroid 5α-reductase) the four reaction steps converting dehydrotomatidine to tomatidine were completed. Sl3ßHSD1-silenced transgenic tomato plants accumulated dehydrotomatine, with corresponding decreases in α-tomatine content. Furthermore, the constitutive expression of Sl3ßHSD1 in potato hairy roots resulted in the conversion of potato SGAs to the dihydro-type SGAs. These results demonstrate that Sl3ßHSD1 is a key enzyme involved in the conversion processes from dehydrotomatidine to tomatidine in α-tomatine biosynthesis.


Assuntos
3-Hidroxiesteroide Desidrogenases/metabolismo , Proteínas de Plantas/metabolismo , Solanum lycopersicum/metabolismo , Tomatina/análogos & derivados , 3-Hidroxiesteroide Desidrogenases/genética , Genes de Plantas/genética , Solanum lycopersicum/enzimologia , Solanum lycopersicum/genética , Redes e Vias Metabólicas , Filogenia , Proteínas de Plantas/genética , Reação em Cadeia da Polimerase em Tempo Real , Tomatina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...